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Ultrasonic attenuation spectra, quasielastic light scattering and shear viscosity measurements of a 
variety of liquids exhibiting critical fluctuations are discussed. Binary systems without additional 
relaxation terms in the ultrasonic spectra can be consistently represented by the Bhattacharjee-Ferrell 
dynamic scaling theory. Results for nonionic surfactant solutions with critical demixing point as well as 
for phospholipid bilayer systems are presented to indicate couplings between the critical dynamics and 
noncritical relaxation phenomena. 

I. INTRODUCTION 

During the past decades much attention has been directed towards the long 
wavelength fluctuations in the local concentration, associated with the critical demixing 
of binary fluids. Concentration fluctuations induce anomalies in the thermodynamic 
parameters as well as the transport properties which largely mask the individual 
characteristics of the system. The dominant ideas in the theoretical description of such 
critical phenomena are the ”universality”, ”scaling”, and ”renormalization” conceptions 
[1]. Theoretical models, in particular the dynamic scaling [2-6] and the mode-mode 
coupling [7-12] approaches, have been proposed, including crossover functions 
describing the transition from the universal Ising-like behaviour to the non-universal 
mean-field behaviour. 

In the experimental verification of theoretical predictions a dominant role is played 
by static and dynamic light scattering and shear viscosity measurements as well as 
ultrasonic spectrometry [13,14]. The former methods yield the fluctuation correlation 
length ξ and the relaxation rate Γ of order parameter fluctuations. Both quantities are 
related by the dynamic scaling hypothesis [3,15-17] 

2/2 ξ=Γ D                                                              (1) 

in which D denotes the mutual diffusion coefficient. The fluctuation correlation length 
v~)( −∈ξ=∈ξ 0                                                           (2) 

and the relaxation rate 
vZ ~

)( 0
0 ∈Γ=∈Γ                                                          (3) 

follow power laws with universal critical exponents v  and Z~
0 and with reduced 

temperature 
cc TTT /−∈=  ,                                                         (4) 
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where Tc denotes the critical temperature. Ultrasonic spectrometry reveals the scaling 
function F(Ω) controlling the frequency dependence of the critical contribution to the 
sonic attenuation coefficient per wavelength 

)( Ω=αλ FcA s
с  .                                                         (5) 

Here  
)(/2 ∈Γπν=Ω                                                            (6) 

is the scaled (reduced) frequency with ν denoting the frequency itself. Parameter A is an 
amplitude weakly depending upon ν and cs is the sound velocity. In Eq. (5) 

bс
λλλ α−α=α                                                            (7) 

where αλ

]

 = αλ with α = attenuation coefficient and λ = cs/ν = wavelength, and with α  

representing the noncritical background part in the attenuation-per-wavelength.  

b
λ

Various theoretical expressions have been presented for the scaling function of 
critically demixing binary liquids. The three most prominent forms can be empirically 
represented by the relation [18] 

[ 2
2/1 )/(4142.01)(

−
ΩΩ+=Ω xnx

xF                                          (8) 
with x = BF, FM, and On, where BF indicates the Bhattacharjee-Ferrell dynamic scaling 
theory [4,5], FM − the Folk-Moser renormalization group theory of the mode-coupling 
model [11,12], and On − the Onuki intuitive description of the bulk viscosity near the 
critical point [19,20]. Graphs of these three scaling functions are shown in Fig. 1. The 

values for the scaled half-attenuation 
frequency in Eq. (8) are ΩBF

2/1  = 2.1, 
FM

2/1Ω  = 3.1, On
2/1Ω  = 6.2. The coefficient 

in the empirical relation takes the 
values nBF = 0.5, nFM = 0.635, and nOn = 
0.5 [18]. 

 

Because of the different scaling 
functions following from the theoretical 
models, a variety of measurements has 
been performed during the past years in 
order to verify or disprove the 
predictions. In this article the results 
from those measurements of compa-
ratively simple binary mixtures are 
summarized and used to discuss more 
complex systems in which, in addition 
to the fluctuations in the local 
concentration, further elementary 
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Fig. 1. Graphs of the Bhattacharjee-Ferrell 
(full line [5]), the Folk-Moser (dashed line 
[12]), and the Onuki (dotted line [20]) scaling 
functions. Arrows mark the half-attenuation 
frequencies. 
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XPERIMENT 
sielastic Light Scattering 
The mutual diffusion coefficient 

),(2 TqqD lΓ= −                                                        (9) 
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of the liquids has been derived from the decay rate ),( TqlΓ  of the normalized 
autocorrelation function 

)],(exp[),,( TqttTqS ll Γ−=                                             (10) 
of the light quasielastically scattered from the sample. A self-beating digital photon-
correlation spectrometer [21,22] has been used for this purpose which was provided with 
a goniometric system and with a special planar-window cell to enable variations of the 
scattering angle θ and thus of the wave vector  selected by the scattering geometry [23]. 
The amount of this vector  

q
r

)2/sin(4
θ

λ
π

=
l

nq                                                    (11) 

depends on the refractive index, measured with the aid of a refractometer (Zeiss, 
Oberkochen, Germany), and on the wavelength λ  of the incident light. A frequency-
doubled Nd:YAG laser has been used as light source with = 532 nm.  was obtained 
from a real-time analysis of the scattered light using a digital correlator board (ALV-
500/E, Laser, Langen, Germany) which allows for correlation function measurements 
within a time-scale ranging from 2×10

l

lλ lS

−7 s to 3.4×103 s [24,25]. The experimental error in 
the diffusion coefficient values was smaller than 5%. The temperature of the sample was 
controlled to within ±0.02 K and was measured with an error of less than 0.01 K. 
Shear Viscosity 

The static shear viscosity of the samples has been measured with a set of Ubbelohde-
type capillary viscosimeters (Schott, Mainz, Germany) or with a falling ball viscosimeter 
(Haake, Karlsruhe, Germany). Both instruments had been calibrated against deionized, 
distilled and carefully degassed water. The experimental error in these viscosity data was 
∆ηs/ηs = 3%. Temperature fluctuations during measurements were smaller than ±0.02 K.  

Using a shear impedance spectrometer the frequency dependent complex shear 
viscosity 

)()()( νη′′−νη′=νη sss i                                                   (12) 

of some samples has been measured between 5 MHz and 130 MHz. The method of 
measurement essentially consists in the determination of the shift in the resonance 
frequency and of the change in the quality factor of a suitable thickness shear (AT-cut) 
quartz resonator when the device is loaded with the sample [26]. An example of a 
complex plane representation of the complex-shear viscosity of a critical mixture [27] is 
presented in Fig. 2. 
Ultrasonic Spectrometry 

The acoustical attenuation coefficient α of the mixture has been measured as a 
function of frequency between 100 kHz and 2 GHz using spot frequency methods. Two 
different methods have been applied. At low frequencies (ν < 15 MHz) a resonator 
method has been employed [28-31] which enables α to be determined relative to a 
suitably chosen reference liquid. At higher frequencies (ν > 3 MHz) absolute 
measurements of α have been performed applying a pulse-modulated ultrasonic wave 
transmission method at variable sample thickness [32-36]. Various cells were used, each 
one matched to a particular frequency range. In Fig. 3, as an example, a spectrum of a 
mixture of critical composition is shown in the frequency normalized format α/ν2-vs-ν.  
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Fig. 2. Complex plane plot of the frequency dependent shear viscosity of the triethylamine-water 
mixture of critical composition [27] at 291.15 K (∈ = 9.2×10−4). The line represents a relaxation 
spectral function with discrete relaxation time τη: ηs(ν) = ηs(∞) + [ηs(0 − ηs(∞)]/[1 + i2πντη]. 
 
Fig. 3. Sonic attenuation coefficient per ν2 versus frequency ν for the triethylene glycol 
monoheptyl ether/water mixture [37] of critical composition (mass fraction of surfactant Y = 0.1) at 
288.15 K (∈ = 2.8×10−2). The full line represents the model relaxation spectral function 
representing the experimental data. The dashed line shows the Bhattacharjee-Ferrell term (Eqs. 5, 
8) in this function, the dashed-dotted line indicates the frequency independent part 

 in the spectrum.  )/(lim 2να
∞→ν

=′B

 
Due to the Bhattacharjee-Ferrell theory the scaling function F(Ω) can be derived as 

the ratio [5] 

[ ] [ ]),(,(/),(),(),(/),()( **
c

b
c

b
c

cc TTTTFTTFF να−νανα−να=νανα=Ω λλλλλλ      (13) 

from the experimental αλ data where  denotes the noncritical background contribution. 
In relation (13) 

b
λα

)()(
)()()(*

TATc
TATcTF

s

ccs=                                                  (14) 

considers the temperature dependence of the sound velocity cs and the amplitude factor A. 
Normally F*  ≡ 1 is used as originally proposed by Bhattacharjee and Ferrell. Special runs 
for the determination of the scaling function have been performed with the aid of a plano-
concave resonator cell (radius of curvature Rc = 2 m [29]). The focusing action of the 
concavely shaped end face was utilized in these measurements to reduce unwanted effects 
from mechanical stress at varying temperature and from small disturbances of the 
resonator geometry when the sample is exchanged for the reference. An example of 
several frequency scans of such scaling function measurements is given in Fig. 4. 

The temperature of the samples in ultrasonic attenuation coefficient measurements 
was controlled to within 0.03 K and measured with an error of less than 0.02 K. The error 
in the attenuation coefficient data was αα∆ /  = 0.05 at ν < 3 MHz, ∆ αα /  = 0.02 at              
3 MHz ≤ ν ≤ 50 MHz, and αα∆ /  = 0.01 at 50 MHz ≤ ν ≤ 2 GHz. 
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ency parts of the ultrasonic spectra of the ethanol/dodecane mixture of critical 
 fraction of ethanol X = 0.687) at some reduced temperatures [38]. 

WITHOUT ADDITIONAL SONIC RELAXATIONS 

 
 example is given for the temperature dependence in the shear viscosity 
re of critical composition. According to the dynamic scaling model, the 

an be expressed by [40,41] 
)exp()()( HZbs η∈η=∈η                                                 (15) 

 critical exponent Zη = 0.065 [42,43], with the background viscosity 
)]/(exp[)( ηηη −=∈η TTBAb ,                                           (16) 
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clohexane mixture of critical composition (mole fraction of nitroethane X = 
unction of temperature [39]. The full and dashed lines are graphs of the 
. 15) and of the background part (Eq. 16), respectively. 
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and with the crossover function 
),,( cD qqHH ξ= .                                                    (17) 

with the viscosity critical exponent Zη = 0.065 [42,43], with the background viscosity 
)]/(exp[)( ηηη −=∈η TTBAb ,                                           (16) 

and with the crossover function 
),,( cD qqHH ξ= .                                                    (17) 

In Eq. (16) parameters Aη, Bη, and Tη are characteristic of the particular mixture 
under consideration. H, the explicit form of which is given in the literature [40,41,44], 
depends upon the fluctuation correlation length ξ and on the cut-off wave numbers qD and 
qc. Parameters ξ, qD, and qc also control the mutual diffusion coefficient, which likewise 
consists of a singular part ( ∆ D) and a background part (Db) [40,41] 

D = D + D∆ b = 



















−

ξ
+

η
πη

+Ω+ η

Dcb

s
K

Z

qq
xxRxbD 111

16
31

2
222

~)()(~ /               (18) 

with the Stokes-Einstein-Kawasaki-Ferrell relation [9,17,45,46] 

ξπη
=

s

BTkD
6

~                                                             (19) 

for the diffusion coefficient in the hydrodynamic limit. Here kB denotes Boltzmann’s 
constant, x = qξ, b = 0.55, R = 1.03, , and 111 2 −−− += )(~~

Dcc qqq
ΩK(x) = (3/4x2)[1 + x2 + (x3 − x−1)arctan x]                              (20) 

is the Kawasaki function [9]. 
For two critical mixtures diffusion coefficient data and graphs of Eq. (18) are shown 

in Fig. 6, indicating  that  only in  the  hydrodynamic regime  (qξ << 1, ∈ > 10−3) the mutual  
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Fig. 6. Diffusion coefficient D for the nitroet-
hane/3-methylpentane (•[47]) and the nitro-
ethane/cyclohexane (ο [39]) mixtures of criti-
cal composition shown as a function of 
reduced temperature ∈. The lines are graphs 
of Eq. (18) with parameter values as obtained 
from the combined evaluation of the dynamic 
light scattering and shear viscosity data. 

 
Fig. 7. Relaxation rate Г of concentration 
fluctuations for the nitroethane/3-methylpentane 
(• [47]) and the n-pentanol/nitromethane (ο [48]) 
mixtures of critical composition displayed versus 
reduced temperature ∈. The lines represent the 
power law Eq. (3) with the theoretical values of 
the exponents and with the amplitudes as given 
in Table. 
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diffusion coefficient follows simple power law. Towards the critical temperature D 
approaches the small but nonvanishing background contribution. Over a significant range 
of reduced temperatures the relaxation rate follows power law (Eq. 3) with the theoretical 
critical exponent =vZ ~

0  1.928. Two examples of experimental Г-vs-∈ relations are given 
in Fig. 7. For some binary systems the amplitudes ξ0 and Г0, resulting from the combined 
analysis of shear viscosity and mutual diffusion coefficient data, are collected in Table. 

 
Table. Amplitudes ξ0 and Γ0 of the fluctuation correlation length and the relaxation rate, 
respectively, for some binary critical systems. 

Critical mixture ξ0, nm Γ0, 109 s−1 

n-pentanol/nitromethane 0.15       187     [48] 
nitroethane/cyclohexane 0.16       156     [39] 
nitroethane/3-methylpentane 0.23       125     [47] 
methanol/n-hexane 0.33         44     [49] 
methanol/cyclohexane 0.33         26     [50] 
ethanol/n-dodecane 0.34           8.6  [38] 

 
Scaling Function 

In order to calculate the scaling function F(Ω) of the binary systems listed in Table, 
a background contribution 

ν=ν=ναλ )()(')(),( TcTBTBT s
b                                         (21) 

as resulting from the assumption of a frequency independent high-frequency part (Fig. 3) 
                                                  (22) )/(lim)( 2να=′

∞→ν
TB

has been used in Eq. (13). The system methanol/n-hexane, however, revealed indications 
for the existence of a non-critical Debye-type relaxation term [49]. In the spectra of the 
mixture of critical composition this term appears to be largely masked by the critical part. 
Therefore,  has not been taken from an extrapolation according to Eq. (22), but has 
been treated as an adjustable parameter when fitting experimental F(Ω) data to the 
theoretical forms (Eq. 8). Presently, we cannot rule out that hidden contributions from 
Debye terms exist also in the sonic spectra of other systems, such as ethanol/n-dodecane. 
F

B′

*(T) values different from 1 at T ≠ Tc, as found with the nitroethane/cyclohexane critical 
mixture [39], for example, may be taken an indication of an unnoticed hidden relaxation 
term.  

Despite of the open question, whether or not small amplitude relaxation terms are 
masked by the dominating critical term, the scaling function data derived from the 
temperature and frequency dependent ultrasonic attenuation coefficients, using the 
relaxation rates from the quasielectric light scattering and shear viscosity data, nicely fit 
to the theoretically predicted Bhattacharjee-Ferrell scaling function (Eq. 8 with x = BF). 
Examples of experimental scaling function data are shown in Fig. 8 where also the graph 
of the FBF(Ω) function is given. 

Half Attenuation Frequency 
The scaled half-attenuation frequency  can be derived from the regression 

analysis of experimental F(Ω) data in terms of the theoretical scaling function F

BF
2/1Ω

BF(Ω). As 
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BF
2/1Ω  has been considered a weak point in the Bhattacharjee-Ferrell model [5] the half-

attenuation frequency has been additionally calculated as [53]  
22/1

BF
2/1 1

)()(
)()(

4142.0
1

)(
2














−









α−α
α−α

Γ
πν

=Ω
λλ

λλ

TT
TT

T b
c

b
c .                          (23) 

In these calculations particular weights have been given to the range of small 
reduced frequencies (Ω = 2πν/Г(T) ≤ 10) where FBF(Ω) sensitively depends upon . 
Results for two binary critical systems are presented in Fig. 9, indicating . 
This value is in nice agreement with the theoretical prediction if effects of hydrodynamic 
coupling are taken into account [5]. The same value resulted also for the methanol/         
n-hexane [49] and the methanol/cyclohexane [50] critical mixtures. For the systems        
n-pentanol/nitromethane (  [48]) and ethanol/n-dodecane (  [38]) the 
half-attenuation frequencies are somewhat smaller. Especially the latter value is likely 
due to an unnoticed hidden Debye-type relaxation terms. 

BF
2/1Ω

1.0±1.2BF
2/1 =Ω

2.1BF
2/ =8.1BF

2/1 =Ω 1Ω

 
 

 

     
                                        log (Ω) 

         

        
                                  log (Ω) 

               
Fig. 8. Scaling function data for the critical 
systems nitroethane/3-methylpentane (  [47]) and 
nitroethane/cyclohexane (  [39]). Points indicate 
previous data for both systems [51,52]. The inset is 
a log-log plot of data for the methanol/hexane 
critical system [49]. Lines are graphs of the 
Bhattacharjee-Ferrell empirical scaling function 
(Eq.8 with x = BF). 

 
Fig. 9. Scaled half-attenuation frequency 
data as a function of reduced frequency for 
the nitroethane/3-methylpentane (∆ [47]) 
and the nitroethane/cyclohexane (Λ [39]) 
mixtures of critical composition. 
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Adiabatic Coupling Constant 

According to 
δ−ν= )()( TSTA                                                                         (24) 

the amplitude parameter A in Eq. (5) is related to the Bhattacharjee-Ferrell amplitude 
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pbc
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δ
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







π
ΓΩπδ
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Here  
06.0)~/( 00 =να=δ Z

~
                                                (26) 

with the universal critical exponents Z0 and  and with the specific heat critical exponent 
α

ν
0. Using Eq. (25) the specific heat is assumed to be given by the simplified version 

 C                                                 (27) pbpcp CC +∈=∈ α0)(
of the more general relation [54,55] 

BEDAC p +∈+∈+∈
α

=∈ ∆+α−
+

)1()( 0

0
.                                  (28) 

Parameter g in Eq. (25) denotes the adiabatic coupling constant the amount |g| of 
which can be calculated from the amplitude S, if the amplitude Cpc of the singular part 
and the background part Cpb of the heat capacity are known. For the binary critical 
systems listed in Table, |g| values between 0.033 (n-pentanol/nitromethane [48]) and 0.26 
(nitroethan/3-methylpentan [47]) have been found. These values are small if compared to 
|g| = 0.7 [56] and |g| = 0.98 [57] as reported for the triethylamine/water critical mixture or 
to |g| = 1.3 [58] and |g| = 2.1 [59] as found for the critical systems ethylammonium 
nitrate/n-octanol and isobutyric acid/water, respectively. Most of the |g| values derived 
from the amplitude S of the critical term in the sonic attenuation spectra have been 
verified using the thermodynamic relation 












ρ

α
−ρ=

p

pc
pc C

T
dP
dTCTg )(                                               (29) 

in which dTc/dP denotes the slope in the pressure dependence of the critical temperature 
and αp the thermal expansion coefficient at constant pressure. For various critical systems 
consistency of the results from the shear viscosity, dynamic light scattering, and heat 
capacity measurements has been additionally shown with the aid of the two-scale factor 
universality relation [60,61] 

XkA B=ξ +3
0                                                          (30) 

where X = 0.27 [4,62,63]. 
 
IV. MIXTURES EXHIBITING NONCRITICAL RELATION PHENOMENA 

Nonionic Surfactant Solutions 
In addition to the critical term ultrasonic attenuation spectra of many binary systems 

contain significant contributions from further relaxation terms. An example is the 
triethylene glycol monoheptyl ether/water (C7E3/H2O) mixture (Fig. 3) the spectra of 
which reveal contributions exceeding the sum of the high frequency asymptotic 
background part and the critical part. For another poly(ethylene glycol) monoalkyl 
ether/water (CiEj/H2O) system a spectrum is shown as excess-attenuation-per-wavelength 

ν−αλ=αλ Bexc)(                                                    (31) 
in Fig. 10. In addition to the critical contribution  a contribution exists which can be 
well represented by the restricted version [64] 

c
λα
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ss /1)−HHH
H A 2# )(1(λ ωτ+ωτ=α

#
H

l

  
                                      (32) 

of a Hill relaxation spectral term 
[65,66]. In this relation  is the 
relaxation amplitude, τ

A
H is the 

principal relaxation time, and s is a 
parameter that describes the shape 
and the width of the underlying 
relaxation time distribution 
function. The Hill term is 
characteristic for all CiEj/H2O 
mixtures with nonionic surfactant 
concentration above the critical 
micelle concentration cmc [67-71], 
except solutions of C12E5 in H2O for 
which the cmc is very small (10−4 
mol/ ). This feature has suggested 
the restricted Hill relaxation term to 
be due to the monomer exchange. It 
was found [67,68] that the restricted 
Hill term can be well treated in 
terms of an extended model [72] of 
the Teubner

l

 - Kahlweit - Aniansson - 
Wall theory [73-77] of the micelle 
formation/ decay kinetics. The 
extension of the theoretical model 
accounts for the finite width of the 
relaxation time distribution at 
surfactant concentrations c around 
the cmc and also for the nonlinear 
dependence of the relaxation time 
τH upon c at small concentrations of 
micellar structures [72]. 

The focus of interest in various 
studies of nonionic surfactant 
solutions with consolute point is the 
interference of the critical dynamics 
and the micelle formation/decay 
kinetics [78]. Interesting, for a large 
variety of CiEj/H2O systems, cove-
ring a cmc range from 10−4 mol/  

t
c
c
d

2
 

 
Fig. 10. Ultrasonic excess attenuation spectrum of
a C6E3/H2O mixture with surfactant concentration
c = 0.341 mol/  at 25°C [67]. Dotted and dashel d
lines indicate the subdivision of the excess spect-
rum into a Bhattacharjee-Ferrell term  (Eq. 5)

and a restricted Hill relaxation term  (Eq. 32),
respectively. 

c
λα

H
λα

 

 
 
Fig. 11. Maximum values (αλ)exc,max of the excess
attenuation spectra (o) and maximum values

 of the critical term in the spectra (∆) foc
max,λα r

CiEj/H2O mixtures shown as a function of the cmc
[69,71]. Included in this diagram are also data for
short nonionic surfactants [79-81]. Except C7E3

(22.5°C) and C10E4 (18°C) the data refer to 25°C. 
up to more than 1 mol/ (Fig. 11) 
he maximum values (αλ)

l

exc,max of the Bhattacharjee-Ferrell term (Fig. 10) are strongly 
orrelated with the critical micelle concentration. It has thus been concluded that, near the 
ritical demixing point, the micelle formation/decay mechanisms and the critical 
ynamics of the nonionic surfactant/water mixtures are coupled. Approaching the critical 
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point the diffusion controlled local fluctuations in the spatial distribution of the micelles, 
accompanied by local fluctuations in the concentration of monomers appear to act a 
noticeable influence on the molecular dynamics. Through the rate equations and the law 
of mass action the micelle formation/decay kinetics is thus governed by the critical or 
precritical fluctuations in the local micelle concentration [69,71]. 

 
V. LIPID MEMBRANES 

Critical phenomena are also observed in phospholipid bilayer vesicle solutions. Lipid 
bilayers are widely accepted models simulating many aspects of biomembrane 
organization and functions [82-86]. On variation of temperature lipid bilayers pass 
through a phase transition. At temperatures below the phase transition temperature Tm the 
membrane exists in a ”gel” state in which the hydrocarbon chains of the amphiphilic 
molecules are stretched and arranged in a rather ordered structure (Fig. 12). At 
temperatures above Tm the chains are molten and exhibit a significant concentration of 
rotational isomers. In addition, the arrangement of the lipid molecules in the bilayer 
membrane is less regular so that the membrane is considered ”fluid”. Near the phase 
transition temperature membranes feature a rapidly fluctuating domain structure (Fig. 12). 
This structure modulates laterally the properties and functions of membranes and is thus 
assumed essential for living systems [87-89]. 

The domain sizes cover wide ranges of length scales, extending from molecular 
dimensions to mesoscopic scales. Since the fluctuations of domains are accompanied by 
volume and enthalpy fluctuations they couple to sonic fields and can thus be studied by 
ultrasonic spectroscopy. An example of an ultrasonic excess attenuation spectrum of a 
phospholipid  bilayer  solution  is  displayed  in  Fig. 13.  In  addition  to  a  broad  critical 
contribution , twoс

λα   Debye-type  relaxation  terms ,  are  indicated  by  relative  1D
λα

2D
λα

 
 

 

    

 
  

   

Fig. 12. Structure of phospholipid 
bilayer membranes below and above 
the main phase transition temperature 
Tm (top) and domain structure of the 
membranes at temperatures around Tm 
(bottom). 
 

Fig. 13. Ultrasonic excess attenuation-per-wave-
length spectrum of an aqueous solution of 1,2-dimyri-
stol-L-3-phosphatidylcholine vesicles (lipid concent-
ration 10 mg/m l , 28°C). The subdivision of the 
spectrum into a Bhattacharjee-Ferrell term ( ) and 

two Debye relaxation terms ( ,α ) is indicated 
by dotted and dashed lines, respectively [90,91]. 

c
λα

1D
λα
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maxima in the spectrum of the solution of 1,2-dimyristoyl-L-3-phosphatidylcholine 
(DMPC) in water [90,91]. These terms can be analytically represented as 

221
j

jj

D

DDDj
A

τω+

ωτ
=αλ                                                       (33) 

where j = 1, 2. Empirically the critical contribution can be well represented by the 
Bhattacharjee-Ferrell spectral function defined by Eq. (5). We mention that the empirical 
scaling function defined by Eq. (8) and shown in Fig. 1 allows indeed for an appropriate 
representation of the empirical spectral. In the final evaluation of the measured data, 
however, the alternative function [92] 

]1)tan5.0cos()1[()/2()( 14/122/1
BF −ΩΩ+Ω=Ω −

∗F                         (34) 

has been used which had been more recently applied to the critical ultrasonic attenuation 
near the isotropic-pneumatic-transition of liquid crystals [92].  

It is worth to notice that, contrary to concentration fluctuations in critical binary 
fluids, the Bhattacharjee-Ferrell theory is applied here to the diffusion of the state          
(gel, fluid) of membrane areas rather than to the diffusion of masses. Another interesting 
feature of the results for bilayer systems is the finding of the Bhattacharjee-Ferrell        
theory, originally derived for fully three-dimensional systems, to also hold for quasi-       
two-dimensional membranes. It has been derived from theoretical arguments [90]       
that, because the variations in the lateral area of lipid molecules are accompanied              
by changes in the local thickness of the membrane, the Bhattacharjee-Ferrell model 
applies well to the domain structure fluctuations. A further noticeable aspect of 
membrane systems is the possibility to approach the critical temperature Tm from          
both sides, looking for fluid domains in a gel matrix at T < Tm and for gel like domains   

in a fluid bilayer at T > Tm. Scaling 
function data for a DMPC/water 
mixture below and above the gel-fluid 
phase transition temperature are shown 
in    Fig. 14. 

The experimental F(Ω) data of 
bilayer membrane systems have been 
fitted to the scaling function FBF*(Ω) 
treating the relaxation rate Г of order 
parameter fluctuations as an adjustable 
parameter. For a DMPC vesicle 
solution the relaxation times τξ = Γ−1 

following thereby are displayed as a 
function of temperature in Fig. 15. 
Within the limits of experimental error 
the relaxation rate data follow power 
law Eq. (3) with rather small ampli-
tudes (Γ0 = 1.2×10−9 s−1, DMPC, T > Tm). 
According to Eq. (1) fluctuation 
correlation lengths ξ on the order of   
10  nm follow from  the  relaxation  rates  

2
 

 
Fig. 14. Normalized ultrasonic attenuation 
coefficient per wavelength, excluding noncri-
tical background contributions for a DMPC 
vesicle solution in water (lipid concentration 10 
mg/m l ) at T < Tm and T > Tm (inset) displayed 
as a function of reduced frequency Ω. Lines are 
graphs of the scaling function defined by Eq. 
(34). 
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near Tm  if diffusion coefficients D = 3×10−11 cm2s−1 at T < Tm  and D = 7×10−9 cm2s−1 at    
T > Tm [93] are used. 

Also displayed in Fig. 15 are the 
relaxation times τD1 and τD2 of the Debye-
type relaxation terms in the ultrasonic 
spectra and the dielectric relaxation time  
τµ that characterizes the reorientational 
motions of the dipolar lipid head groups 
[94]. The finding that τD1 almost agrees 
with τµ at the same temperature has lead to 
the conclusion that the low frequency 
Debye term reflects the axial diffusion of 
lipids and that, outside the transition 
region around Tm, the rotation of the 
molecules and the reorientations of the 
head groups are coupled. Near Tm the axial 
diffusion of the molecules slows down 
whereas the dielectric relaxation displays a 
stepwise change, indicating significantly 
faster head group motions at T above Tm 

than below. The relaxation time τD2 of the 
high-frequency Debye term coincides with 
the correlation times of end group (10−11 s 
− 10−10 s [95]) and of segmental motions of 
middle parts (10−9 s [95]) of the 
hydrocarbon lipid chains within the 
membranes. It also corresponds with the 
relaxation times of ultrasonic and shear 
viscosity spectra [96] of liquid n-alkanes 
of similar chain length. The high-frequency Deb
to a collective mode of isomerization of the hyd
According to our expectations the chain isomeri
stepwisely when the lateral area per lipid mol
temperature. 

F
s
t
[

 
VI. CONCLUSIONS 

In the homogeneous region near a consolu
liquid mixtures without additional sonic relaxati
Bhattacharjee-Ferrell dynamic scaling model. U
using the relaxation rate as derived from quasie
measurements. If the amplitude of the spectra 
adiabatic coupling constant calculated from its
data, within the limits of experimental error 
alternative thermodynamic relation.  

Use of the Bhattacharjee-Ferrell model for t
part in the ultrasonic attenuation spectra or m

 
 

 
ig. 15. Relaxation times of DMPC vesicle
olutions as a function of temperature around
he gel-fluid phase transition temperature Tm
91]. 
ye-type relaxation has thus been assigned 
rocarbon chains within the lipid bilayer. 

zations do not slow down at Tm but fasten 
ecule increases on passing the transition 

te point the critical dynamics of binary 
ons can be consistently represented by the 

ltrasonic spectra can be well described 
lastic light scattering and shear viscosity 
is treated as an adjustable parameter, the 
 value, additionally using heat-capacity 
agrees with the value derived from an 

he analytical representation of the critical 
ore complicated systems allows for a 
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favourable description of further relaxation terms. Solutions of nonionic surfactants in 
water indicate a coupling between the critical dynamics and the micelle formation/decay 
kinetics. A fluctuation controlled monomer exchange process has been proposed. Near 
the gel-fluid phase transition ultrasonic spectra of phospholipid bilayer vesicle solutions 
comprise a critical term which is due to the domain structure fluctuations of the 
membranes. It can be likewise represented by the Bhattacharjee-Ferrell dynamic scaling 
theory. Additional Debye-type relaxation terms in the spectra reflect the axial diffusion of 
the lipid molecules and the structural isomerization of their hydrocarbon chains. The 
former motions slow near the phase transition temperature, whereas the chain 
isomerizations are unaffected by the critical dynamics but dependent upon the available 
lateral area per lipid molecule. 
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